Balancing Nuclear Equations

Name[•]

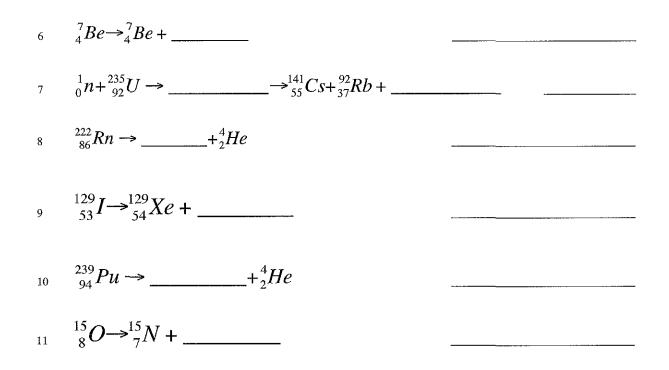
Period: _____

There are two types of nuclear reactions. Fission, where a nucleus breaks into two or more pieces, and fusion where two or more nuclei combine to form a new element. In nuclear reactions, only the nucleus is involved. Electrons are ignored. Some atomic nuclei are inherently unstable and spontaneously change or "decay". There are four types of decay:

Туре	Symbol	Charge of	Mass(AMU)	Effect on	Effect on Atomic	Strength
		particle		Atomic #	Mass	
Alpha	α	+2 (He	4	decrease by 2	decrease by 4	Stopped by
		nucleus)				paper
Beta-	β-	-1	0	increase by 1	0	Aluminum Foil
e- emission	electron					
Beta+	β+	+1	0	decrease by 1	0	Aluminum Foil
e- capture	Positron			-		
Gamma	γ	none	none	none	none	Lead

The net result of α , β - or β + decay is a new element. In b- decay, a neutron decays into a p+ and an ewhich is then ejected. In β + decay a p+ captures an e- and transforms into a neutron. But despite the nature of the reaction the law of conservation of matter still applies and the equations are balanced the same way. Note α particle is a helium nucleus!

Another type of reaction occurs when something impacts a nucleus. These reactions result either in the nucleus splitting (fission) or the combination of two or more nuclei to form a third, different nucleus (fusion).


Balancing Nuclear Equations. Matter must be conserved including all p+ & n°. Example:

Decay reaction (α decay) Fission Reaction Fusion Reaction ${}^{219}_{86}Rn \rightarrow {}^{4}_{2}He + {}^{215}_{84}Po$ ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{92}_{36}Kr + {}^{141}_{56}Ba + 3{}^{1}_{0}n$ ${}^{35}_{17}Cl + {}^{1}_{1}H \rightarrow {}^{36}_{18}Ar \text{ another example } {}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + n^{\circ}$

Practice

Fill in the missing symbol and name the reaction.

 $^{3}_{1}H \rightarrow ___+^{0}_{-1}e$ 1 $^{232}_{92}U \rightarrow ^{228}_{90}Th + _$ 2 $^{144}_{58}Ce \rightarrow ^{144}_{59}Pr + _$ 3 $^{65}_{30}Zn \rightarrow __+^{0}_{+1}e$ 4 $^{40}_{19}K \rightarrow ^{40}_{18}Ar + _$

Write a balanced nuclear equation for each decay process indicated.
a. The isotope Th-234 decays by an alpha emission.

b. The isotope Fe-59 decays by a beta emission.

- c. The 1sotope Tc-99 decays by a gamma emission.
- d. The isotope C-11 decays by a electron capture.

Balance these equations: Note ${}_{2}^{4}He$ is the only stable isotope of helium.

13. ${}^{1}H + {}^{7}Li \rightarrow$ ______H + ____He

15. What is the balanced nuclear equation for the reaction of curium-246 with carbon-12 to produce nobelium-254 and four neutrons?

16. What is the balanced nuclear equation for the reaction of californium-250 with boron-10 to produce lawrencium-258 and two neutrons?