Part 1 The Cell, A Unit of Life

1 Chemistry and Life

I. Behavioral Objectives

Students should be able to

1. name the subatomic particles of an atom and describe their charge, weight, and location in the atom;
2. state the atomic symbol, number, and weight of any atom when viewing the Periodic Table of Elements;
3. draw a diagram of any of the first twenty atoms in the periodic chart and place correctly the proper number of protons, neutrons, and electrons;
4. predict whether a reaction between atoms will be ionic or covalent and if
a. ionic, show the proper charge of the resulting ions
b. covalent, indicate the proper placement of the bonds;
5. recognize which atom in an oxidation-reduction reaction has been reduced and which has been oxidized;
6. state five differences between inorganic and organic compounds;
7. discuss in general the chemical properties of water, acids, and bases;
8. explain and use the pH scale;
9. explain the formation of macromolecules by synthesis and degradation of macromolecules by hydrolysis;
10. explain the primary, secondary, and tertiary structure of proteins;
11. give examples and explain the structure of monosaccharides, disaccharides, and polysaccharides;
12. explain the structure of neutral fats, soaps, and phospholipids;
13. recognize the difference between saturated and unsaturated fatty acids;
14. recognize the primary structure of a nucleic acid strand;
15. name the molecules that make up a nucleotide.

II. Pretest

1. The atomic number for carbon is six; therefore, carbon has \qquad protons and
\qquad electrons.
2. Two isotopes of carbon are ${ }^{13} \mathrm{C}$ and ${ }_{6}^{14} \mathrm{C}$. The first of these has \qquad neutrons and the second has \qquad neutrons.
3. The compound $\mathrm{K}^{+} \mathrm{Cl}^{-}$is an \qquad compound and K^{+}and Cl^{-}are \qquad .
4. Which of the ions in question 3 has lost an electron? \qquad Which has been oxidized?
5. The compound CH_{4} is an \qquad compound, in which the atoms \qquad electrons.
6. Acids have a pH that is \qquad than 7 , and bases have a pH that is \qquad than 7.
7. At $\mathrm{pH} 7,\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$. Below pH 7 , which of these is greater? \qquad
8. The primary structure of a protein is a polymer of \qquad , the secondary structure is a
\qquad , and the tertiary structure is its final \qquad shape.
9. Monosaccharides, disaccharides, and polysaccharides may be compared as to the number of \qquad molecules they contain.
10. An unsaturated fatty acid contains less than a saturated one.
11. When glycerol combines with three fatty acids, a \qquad molecule results.
12. Both DNA and RNA are polymers of \qquad each of which contains a \qquad a \qquad , and \qquad acid.

III. Definitions

Define these terms:

1. atom (p. 19) \qquad
2. isotope (p. 21) \qquad
3. ion (p. 22)
4. formula (p. 25) \qquad
5. compound (p. 24) 4
6. oxidation-reduction (p.25) \qquad
7. hydrogen bond (p. 26) \qquad
\square
8. dissociation (p. 28)
9. pH (p. 28)
10. synthesis (p. 30) \qquad
11. polymer (p. 30) \qquad
12. hydrolysis (p. 30) \qquad
13. amino acid (p. 31) \qquad
14. peptide bond (p.31) \qquad
15. sugar (p. 34) \qquad .
16. fat (p. 36) \qquad
17. emulsification (p. 37) \qquad
18. phospholipid (p. 37) \qquad
19. nucleotide (p. 38) \qquad
20. ATP (p. 39) \qquad
IV. Study Questions for Inorganic Chemistry
21. Periodic Table. On the simplified table (p. 3) do the following:
a. Circle the atomic numbers.
b. Underline the atomic weights.
c. Check the figure that gives you the number of protons.
d. Put an X beside the figure that tells you the number of electrons.
e. Calculate and add to each block the number of neutrons.
22. To the left draw a diagram of oxygen, putting in the nucleus and shells. Ndd to your diagram the number of protons and number of neutrons. Put in dots to indicate the electrons. To the right draw a diagram of magnesium using the same directions.

Complete the following reactions by giving the product. Indicate ionic bonds by giving the proper charges. Indicate covalent bonds by drawing straight lines.

Examples:
$\mathrm{Na}+\mathrm{Cl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$

Practice reactions:
(1) $\mathrm{Li}+\mathrm{F} \rightarrow$
(7) $\mathrm{H}_{2}+\mathrm{O} \rightarrow$
(2) $\mathrm{C}+\mathrm{O}_{2} \rightarrow$
(8) $\mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow$
(3) $\mathrm{N}+3 \mathrm{H} \rightarrow$
(9) $\mathrm{Cl}+\mathrm{Cl} \rightarrow$
(4) $\mathrm{Mg}+\mathrm{O} \rightarrow$
(10) $\mathrm{N}+\mathrm{N} \rightarrow$
(5) $2 \mathrm{Al}+3 \mathrm{O} \rightarrow$
(11) $\mathrm{Mg}+2 \mathrm{Cl} \rightarrow$
(6) $\mathrm{K}+\mathrm{Cl} \rightarrow$
(12) $\mathrm{Si}+\mathrm{O}_{2} \rightarrow$
d. Oxidation-reduction. For each of the reactions in (c), underline the atom that was oxidized and circle the atom that was reduced upon completion of the reaction.
5. Isotopes. Circle the heavy isotopes below:
${ }_{6}^{12} \mathrm{C}$
6. pH .
a. Define an acid, base, salf.
acid \qquad
base \qquad
salt \qquad
b. The pH scale can be represented as follows.
\(1 \xlongequal[\substack{More \mathrm{H}^{+}

Less \mathrm{OH}^{-}}]{Acid} 7 \frac{Base}{Less H^{+}}\)| More OH^{-} |
| :--- |

c. If the hydrogen ion concentration of $\left[\mathrm{H}^{+}\right]$of 10^{-7} is a pH of 7 , what is the pH of the following concentrations?
[H^{+}]
pH
Acid or Base

10^{-4}	4	
10^{-6}	6	
10^{-10}	0	
10^{-14}	4	

d. Which of the above numbers represent the largest $\left[\mathrm{H}^{+}\right]$? \qquad
e. What is the importance of pH to biological systems? \qquad
f. How do living things prevent rapid and drastic changes in pH ? \qquad
7. If a description below is true of inorganic compounds, place an I in the space provided. If it is true of organic compounds, place an O in the space provided.

a. contain a small number of atoms

b. are often associated with living organisms
c. always form covalent bonds
d. isomers are possible
e. usually contain metals and nonmetals
f. always contain carbon and hydrogen

V. Study Questions for Organic Chemistry

1. What atoms are most often found in organic molecules?
\qquad
\qquad
2. Which of the atoms in question 1 is unique to amino acids and nucleotides?
3. What are the four classes of organic compounds?
\qquad
\qquad
4. Of the classes in answer 3,
a. which are most concerned with energy?
b. which one forms enzymes? \qquad
c. which one makes up genes?
5. a. When many glucose molecules are joined together, the macromolecule \qquad results. When many amino acids are joined together, the macromolecule \qquad results. When glycerol and fatty acids are joined together, \qquad results. When nucleotides join together, the macromolecule \qquad results.
b. Associate the molecules mentioned in (5a) with this diagram:

(c)

Which molecules should be associated with (a) in the diagram? \qquad
\qquad , \qquad and \qquad , \qquad Which molecules should be associated with (c)? \qquad
,
At (b) and (d) indicate the proper direction of the arrows.
6. In this hydrolytic reaction, write in the molecule required on the left and the atoms required on the right.

7. Write the words saturated and unsaturated beneath the appropriate structure.

a. \qquad b. \qquad
8. This is an amino acid. Write the word amino and the word acid on the appropriate line.
 $\}$
a. \qquad
b. \qquad
9. This is a dipeptide. Circle the peptide bond.

10. Levels of protein structure.
a.

This is the \qquad structure of a protein. What type of bond links the amino acids together? \qquad What atoms make up the backbone of this structure? \qquad
What groups are the side chains?
b. The secondary shape of a protein has what shape? \qquad What type of bond is required to hold this shape? \qquad Draw a dotted line on the structure above to indicate this bond.
c. The tertiary shape of a protein requires bonding between the \qquad groups.
11. This is the structure of a nucleotide. Write in the words base, sugar, and phosphoric acid beside the appropriate structures.

12.

a. This is the primary structure of a \qquad strand. What is the backbone? \qquad What are the side molecules? \qquad
b. What molecule would S be? \qquad What specific molecule is S in DNA?
\qquad What specific molecule is S in RNA? \qquad Which nucleic acid would require a double strand?
13.

a. Is this an organic compound? \qquad How do you know? \qquad
b. The double bond between the carbon and oxygen signifies that the carbon and oxygen are sharing pairs of electrons.
c. This molecule is not an amino acid. Does it have an amine group? \qquad Does it have an acid group?
d. Does this molecule have a long carbon-hydrogen chain like a fatty acid? \qquad
Is it a fatty acid? \qquad
e. Is this molecule a sugar molecule? \qquad How do you know? \qquad
f. Is this molecule an enzyme? \qquad How do you know? \qquad
g. This molecule is urea, an amine compound of some significance in the body.

VI. Organic Chemistry Quiz

Matching

a. amino acid (or more than one)
d. glycerol
b. glucose (or more than one)
e. fatty acid
c. nucleotide (or more than one)
f. both glycerol and fatty acids
1.

2.

3. sugar-base
phosphate
4.

5.

6. nucleic acid \qquad , protein \qquad , polysaccharide \qquad , tripeptide ___ , disaccharide \qquad , cellulose \qquad
7. gene \qquad quick energy \qquad , enzyme \qquad long-term stored energy \qquad , plant cell wall \qquad
8. peptide bond \qquad , unsaturated \qquad , straight chain of ring compounds \qquad , hydrocarbon (only carbon and hydrogen) chain \qquad , ribose \qquad , glycogen \qquad , hydrogen bond \qquad

VII. Posttest

1. Chlorine has an atomic number of 17 . How many electrons are in the outermost shell?
a. one
b. seven
c. eight
d. it varies
2. When chlorine becomes the chloride ion, its charge is
a. plus one
b. plus seven
c. minus one
d. minus seven
3. When hydrogen chloride, a strong acid, is added to water, the pH -
a. goes up
b. stays the same
c. goes down
d. cannot be determined
4. When two nonmetal oxygen (\#8) atoms react with each other, they
a. each give up two electrons
b. each take two electrons
c. each need six electrons
d. share
5. In this reaction, $\mathrm{K}+\mathrm{Cl} \rightarrow \mathrm{K}^{+} \mathrm{Cl}^{\text {, }}$, chlorine has been reduced.
a. True
b. False
6. This bond
 between the carbon and nitrogen is a
a. hydrogen bond
b. weak bond
c. peptide bond
d. all of these
7. Which one molecule would be used repeatedly to form a nucleic acid?
a. nucleotide
b. amino acid
c. glucose
d. any one of these
8. The backbone of a nucleic acid would be composed of
a. the bases
b. sugar-phosphate-sugar-phosphate, etc.
c. $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$
d. the " R " groups
9. Which molecule is unsaturated?
a. H

b.

10. Which pair below is mismatched?
a. amino acid-protein
b. glycerol-glycogen
c. glucose-starch
d. phosphoric acid-nucleotide
11. Which statement characterizes a hydrogen atom that is participating in a hydrogen bond?
a. It must be covalently bonded to an oxygen atom.
b. It must have a small positive charge compared to the atom to which it is bonded.
c. It must be part of a water molecule.
d. It must be in its ionic form (i.e., a proton).
12. Proteins are polymers of \qquad which sometimes function to
a. amino acids; catalyze chemical reactions
b. nucleotides; convey genetic information.
c. fatty acids; transport substances through membranes
d. nucleotides; provide energy for cellular processes

In questions $13-15$, fill in each blank with the proper term.
13. \qquad are lipids containing phosphorus that are particularly important in the formation of cell membranes.
14. \qquad is the splitting of a bond within a larger molecule by the addition of water.
15. \qquad is the act of dispersing one liquid in another, as fat in water.

